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Van der Waals interaction mediated by an optically uniaxial layer
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We study the van der Waals interaction between macroscopic bodies separated by a thin anisotropic film
with a uniaxial permittivity tensor. We describe the effect of anisotropy of the media on the magnitude and sign
of the interaction. The resulting differences in the van der Waals interaction are especially important for the
stability of strongly confined liquid crystals, and nanostructures characterized by highly uniaxial macroscopic
molecular arrangement, such as in self-assemblies of long organic molecules forming films, membranes,
colloids, etc. We introduce an improved expression for the Hamaker constant which takes into account the
uniaxial symmetry of a medium. In special cases neglecting the optical anisotropy even leads to an incorrect
sign of the interaction.
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[. INTRODUCTION calculation of the van der Waals force, in the case of an
anisotropic permittivity tensor, is even more complex than it
In the last decades van der Waals interaction was assumdglin the case of isotropic interacting media.
to be a solved problem. However, new technological appli- In this paper, we emphasize the influence of the anisot-
cations demand smaller and smaller systems whose stabilif@py of the permittivity tensor of a medium on the van der
is strongly influenced even by weak interactions such as thévaals force through the simplest example of anisotropy—
van der Waals interaction which, thus, should be determineé€ uniaxial symmetry—and introduce the Hamaker constant
as accurateiy as possitﬂb'ZJ_ Especia”y intriguing are elec- for the same Symmetry of the permlttIVIty tensor. There are
tronic devices incorporating polymers, liquid-crystalline ma-two reasons for choosing the uniaxial symmetry. First, as
terials, and other materials which are characterized by highljlready noted above, there are many important physical and
anisotropic macroscopic physical propertjgs-6). iological systems consisting of layers characterized by
Severai approaches have been empioyed to Caicuia‘[e tmhly uniaxial molecular arrangements. In these, the Corre(?t
van der Waals interaction between macroscopic bodies. THéependence of the van der Waals force on the anisotropic
simplest way, known as the Hamaker approg@his to sum  refractive indices and static dielectric constants is needed for
all pairwise interactions between constituent molecules. Idequate explanations of experiments. Second, the uniaxial
condensed media these are not independent but rather sfgmmetry is the highest symmetry yielding an analytical so-
strongly influenced by the surrounding medium; thereforelution for the surface electromagnetic fluctuation modes
taking many-body interactions into account becomes essethich determine the van der Waals force. An analytical so-
tial. On a mesoscopic scale a many-body system can be réition is required for derivation of the analytic Hamaker con-
garded as a continuum, and can be described by macroscofsnt.
qguantities such as permittivity, which take into account the
screening of the surrounding molecules. The continuum ap-
proach is known as the Lifshitz approal@i. In the nonre-
tarded limit a dependence on the separation between two
bodies can be extracted from the material properties, and the The calculation is performed for a simple planar parallel
van der Waals interaction can be written in a form of angeometry: two macroscopic bodies separated by a layer of a
explicit separation dependence and the “Hamaker” constantuniaxial medium. Here it should be noted that due to the
Although many decades ago Kihara and Hof@kintro-  anisotropy of the medium, which changes the boundary con-
duced the van der Waals interaction energy for a three-sladlitions for the electromagnetic field surface modes, the re-
system of uniaxial media, generally, the van der Waals forceults of the study in the planar parallel system cannot be
for anisotropic media such as liquid crystals is still calculatedapplied to curved geometries simply by using the standard
by use of isotropic yet average macroscopic physical quanDerjaguin procedurd13]. Using the same arguments as
tities. To our knowledge the anisotropy of interacting mediawhen choosing the uniaxial symmetry of the permittivity ten-
has been avoided in experimental studies considering anissor, the optical axis of the interposed uniaxial medium is
tropic media; however, there are a few other theoretical studassumed to be perpendicular to the gap between the macro-
ies[10,11]. Here the reason for neglecting the anisotropy ofscopic bodies. For optical axes laying either in the plane of
the permittivity tensor cannot be the insignificance of thethe gap or even in an arbitrary direction, the Hamaker con-
anisotropy of relevant quantities, but rather the fact that therstant can be calculated only numerically. Since the aim of
are no known simplified expressions to calculate the van dethis paper is to introduce simple analytical expressions, cal-
Waals force; however, for isotropic media there are wellculations for more general cases are omitted here.
known Hamaker constants calculated from the Lifshitz In the systems we are referring to, the uniaxial layer is
theory (see, e.g., Ref[12]). On the other hand, a general surrounded by isotropic media, either glassy materials, lig-

II. CALCULATION OF THE UNIAXIAL
VAN DER WAALS FORCE
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uid, or air. Often, especially when talking about liquid crys- field at the interface between two different media. For the
tals, the uniaxial order of the layer in question is obtained byuniaxial permittivity the anisotropy of interacting media 1
inducing the order with some other uniaxially ordered mate-and 3 changes the interaction via the renormalized effective
rial. In such a case, the system consists of two or thre@ermittivity Ei_"/fiueil' On the other hand, the anisotropy
uniaxial media with parallel optical axes. In the following, of medium 2, which mediates the interaction between the
the calculation will be performed for the general case ofgther two media, not only renormalizes the effective permit-

three uniaxial media with parallel optical axes. The transforyyity hut also explicitly affects the magnitude of the interac-
mation to the case of isotropic macroscopic bodies will bg;jgp.

evident.

In a coordinate system with theaxis normal to the gap
between two macroscopic bodies and with axasdy in the [l. UNIAXIAL HAMAKER CONSTANT
plane of one of the interfaces, the permittivity tensor of each

medium readse®(w) =€/ (0)=¢ (@), €Xw)=e (), In order to evaluate the integral in Ed.), the frequency
= - L = I

vt ; ] dependence of the permittivity has to be known. The permit-
ande{"""*(w)=0; herei=1,2, or 3 represent different me- {jyity varies with the frequency in much the same way as

dia. After performing standard calculations as in R8.or  qoes the atomic polarizability of an atom, and can be usually
Refs.[9,14], i.e., considering Maxwell's equations for the represented by a function of a forfi4]

electromagnetic field in the dielectric medium and the linear
response of the media, one obtains the expression for the

force per unit area between two semi-infinite uniaxial bodies e—n2 n2—1
1 and 3 mediated by uniaxial medium 2: e(w)=1+ T tolo, 1= ol ()
€5(0) (= _
(d,T)= kBT3 %0 f A12A 25 €XH(—X) wheree andn stand for each of the components of the cor-
167d” €, (0) Jo 1+A A exp(—X) responding tensorg= ¢(0) is the static dielectric constant,
" 3 n is the refractive index of the medium in the visible, is
n kgT \/e_dé the molecular rotational frequency, angl, is the plasma
7d® & 2% ¢ frequency. Usuallyw, <10 s l<w~27Xx3x 10" s71,
Sinceé;=2.5x 10" s 1>, , the dispersion relation is de-
joc 2( ARAZ exp(—2p./ey dép/c) termined solely by the electronic absorption, i&ié,)~1
x| dpp R R +(n?2—1)/(1+ &3/ 2). Knowing all this the force can be
! 1+A1A25eXH(—2p €z déy/C) calculated numerically. However, our aim is to introduce an

ATRAR —
2 A A eXH(—2py/€;, A€, /C) will be more approximate. In the nonretarded limit, which is
valid when the bodies are in close proximity to each other,

€2, 1+ ARAR expl — 2py/e, dé,/c)
: 128423 8XR~ 2P 2,4 the expression in Eq1) reduces tdl=—A/67d*, whereA
Here the force is a derivative of the change of the free energf the Hamaker constant calculated from the Lifshitz theory:

of the zero-point fluctuations of the electromagnetic field due
to the presence of the bodies with respect to the separation

) analytical expression for the van der Waals force, although it
@

between them. The first term corresponds to the static re- 3keT = €2,(1&n)
sponse of the medium, and the second term to the dynamic A=-— 4 “le (i&)
response of the medium, where@gs=2mwnkgT/%, +
% Ap(i€n)Apg(i€)e™
- - XJ dx 2 1 é:.n) 23( ‘f.n) . @
_80=0 — — 0 T 1+ A& AnliEr)e
== — . &= Ei"Eil:
E|(0)+€](0)
Here the prime over the sum denotes that the term with
Si—S; =0 should be multiplied by 1/2. After performing the el-
ﬁ:sﬁrsj y o Si= \/pz— 1+ eiilezﬂ 2 ementary integral in Eq4), neglecting the terms which cor-

respond to “many-body” interaction@ere, by analogy with
_— the microscopic description the contributions from different
KRZGI_SJ_GJ_S' 5= \/m orders inA,A 55 are termed “pairwise” interaction if only
Uestes A the first order is taken into account, and “many-body” in-
teraction if the complete series of orders is considgrest
ande; = €;(i &,), unless stated otherwise. The influence of theplacing the sum oven by an integral with respect to the
anisotropy of the permittivity tensor on the van der Waalsfrequency &, and performing a few other simplifications,
force enters into the problem through a change of the penahich allow us to calculate the latter integral analytically,
etration depths of the surface fluctuation modes and via ane ends up with the final expression for the Hamaker con-
change of the boundary conditions for the electromagnetistant for uniaxial dielectric media:
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sponding interaction is repulsive. Similar conditions can be

3 62” :1_62 €3~ €p i )
A=A"" 0+ A" 0=k T— —— —— determined for the dynamic part of the Hamaker constant. It
4 €2 e1t+€, e3t €, can be shown that the part in the square brackets in3tds
1
positive definite; thus the sign of the dynamic part of the
Shwe — = Hamaker constant depends solely on the sign of the product
+ (nl_nz)(ns_nz) > T\, 2 T2 —_ — — —
8\/5 (nf—n3)(n3—n3). For n,<ng,nz or ny,>ng,ny the dy-
. namic Hamaker constant is positive and the dynamic part of
\/E(nzu_”zj the van der Waals interaction is attractive, whereasnfor
X 2 2 2 2 <n,<ns Or n;>n,>n5 the dynamic Hamaker constant is
N, (2n; —ni—n3)(2n; —nz—nj) . s o :
L L L negative and the corresponding interaction is repulsive. The
s = — sign of the isotropic Hamaker constant has the same se-
I quence dependence as the uniaxial Hamaker constant, but
B with isotropic parameters'>® andn's® instead of effectives
V2 +(2n3, — 1) (313 ISOTopIE P
+ andn, respectively.
2 _T2_ 2 As already noted, up to now in experimental studies con-
2n5; —nz—n; ) 7 . :
n I (5) cerning uniaxial layers the van der Waals interaction was
’ calculated by use of the isotropic Hamaker constant and iso-
Vi ng(2ng 3 nd)(n3—d) v P

tropic parameters. There are two sources of mistakes when
doing this. First, even if the effective parameters are very

Wheregiz \/H, anda stands for either the static dielec- close to the |sotroplg parameters, the_mggnltude of obtained
. L L . Hamaker constant differs from the uniaxial one because the
tric constante or the refractive index in visiblen. If the

) : : ; ) . . anisotropies €, =€, — and An,=n, —n, are ne-
interacting macroscopic bodies are isotropic, the effective PIes e, ,62\\ EZ; 277 T2y

— — . . glected.(The static part is always smaller, whereas the dy-
parameters and n are replaced by isotropic parameters namic part can be either smaller or largén the static part
andn, respectively. If all three media are isotropic, the ex—th pl ted d d ; i ed i E[)h ' i
pression reduces to the well known formutee, e.g., Ref. € NEYIECIed dependence IS easily recognized in the ralio

[12]) 62\\/ €, whereas in the difference of the dynamic parts the
dependence on the anisotropy is not that clear. Second, the

3 €1— € €3— € difference between the isotropic and uniaxial Hamaker con-
A= ZkBTE e eate stants can be even more profound if the sequences of isotro-
1hr2Es =2 pic and effective parameters are different. In this case, the

3w, (ni_ nﬁ)(n%— n%) isotropic expression yields the wrong sign of the interaction.

—— 5 — A change of sequences is very easily obtained for static di-
82 ni+n3yn3+n5(yVni+n3+ yni+n)) electric constants, whereas the optical anisotropies are usu-

(6)  ally small. Since the static Hamaker constant is about an
order of magnitude smaller than its dynamic part, the effect
is not very common in experimental setups. We believe that

In the following, the Hamaker constant introduced forgne of the reasons why the problem of a possible wrong sign
uniaxial media will first be compared to the isotropic Ha- of the Hamaker constant, in systems consisting of uniaxial
maker constant and, second, its validity with respect to thenedia, has not been recognized before is the narrowness of
full Lifshitz theory will be discussed. possible combination of materials that satisfy the described
conditions(see Fig. 1L However, it can be expected that the
effect has already been observed but not recognized and/or
In the derived expressions, the difference between isotrounderstood. The explained change of the attractive or repul-
pic and uniaxial media is explicitly manifested: The relevantsive character of the van der Waals interaction to the repul-
parameters, which determine the character of the interactiogive or attractive character due to the increased optical an-
in the case of isotropic interacting media, are €'*° andn isotropy can also be one of the reasons for the change in the
=n'*°. In the case of uniaxial media the relevant parameterstability of thin layers when crossing theis)ordering tran-
are not traces of the corresponding tensoe§°= (e sition. As an example,_ we have calculated the Hamaker con-
+2¢,)/3 and @iso)zz(nﬁ_i_ 2n?)/3, butrather products of ~Stant for a system which is often a part of the experimental

Lo = — ; tup: a thin liquid-crystalline film deposited on a solid sub-
heir eigenval =+ ndn=+/nyn,. The sign of th se ) S . oo
¢ eIr elgenvailese= veje, a d I+ e sign of the .V%trate and in contact with air on the other side. For a liquid
static part of the Hamaker constant depends on the relati tal for 5CB é1=18.5. ¢ =7 mi—1.702. andn
sequence of the introduced renormalized static dielectrigiséé)e'gr'{ sci)lzca é_‘{; g ,ne—ll_S)’ tr;1He_ varn d*e‘:“:N s
constants: fore;<e€;, €3 Or €;>€1,€; the static Hamaker jyiora0tion is attractive in both uniaxial and isotropic phases:
constant is positive and the static part of the van der Waal§Or the same liquid crystal on micas€ 11 andn=1.6) the
interaction is attractive, whereas fef<e,<e3 or €;>€; interaction is repulsive in the isotropic and attractive in the
> ¢4 the static Hamaker constant is negative and the corredniaxial phase.

A. Uniaxial vs isotropic Hamaker constant
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FIG. 2. Van der Waals force per unit area in the layer of nematic
FIG. 1. Dynamic part of the Hamaker constant as a function ofliquid crystal in contact with a solid substratéa)-silica (e= 14,
B=ny/n, . The solid line corresponds to the uniaxial Hamakern=1.5) and(b) mica (e=11, n=1.6)—and air. Solid curves cor-
constant, and the dashed line to the isotropic Hamaker constant itespond to full Lifshitz theory for uniaxial media, dashed curves are
units of Ao=3ﬁwen2j8\/§- Here nZH/nzL=1.2 and nz/ny the van der Waals force per unit area calculated with uniaxial Ha-
—=0.67. maker constant, and dotted lines are calculated with the Hamaker
constant for isotropic media. Inset: logarithmic plot of uniaxial

B. Hamaker approximation vs Lifshitz theory pressures.

After a comparison between the isotropic and uniaxialyt gielectric and optical properties of constituent media on
Hamaker constants the validity of the approximations thajhe yan der Waals interaction. Here is the opportunity for the
lead us from_ the full Lifshitz theory to the Hamaker CO”StamanaIytical expression we have derived. Especially lately, in
should be discussed. By comparing the Hamaker constantgy gies which aim to explain experiments on the spinodal
in which we take into account (?,lther many-body” interac- gewetting of thin soft organic materials usually characterized
tions [Eq. (4)] or just “pairwise” interactions[Eq. ()], it by niaxial dielectric permittivity and refractive index, a cor-
can be seen that in the nonretarded limit neglecting thegct determination of at least the character of van der Waals
higher orders does not considerably alter the magnitude Qfteraction is very importar{tL5,16.
the interaction. Nevertheless, one should bear in mind that a
screening of the surrounding molecules decreases the inter-
action, though, for realistic parameters only 5¥6% at the IV. CONCLUSION
most. As already known, the main defect of the introduced

“Hamaker” procedure is not in neglecting “many-body” In conclusion, we have derived an improved analytical

interactions but in neglecting the retardation. The latter beXPréssion for the van dgr Waals Interaction beItV\./e'en macro-
comes important when the time it takes for the electromag-SCOpIC bodies, characterized py a “”'ax"?" permittivity te'nsolr.
netic field of one atom to reach the second one and to returWe have shown that neglecting the anisotropy of static di-

becomes comparable to the period of the fluctuating diloc)leglectric constants and refractive indices can yield the wrong

Usually, this happens when the interacting atoms are abo&paracter of the interaction, leading to an incorrect interpre-

10 nm apart. In Fig. 2 we present the van der Waals force fojation or prediction of the stability of thin uniaxial deposi-

the two systems considered above. The van der Waals forc,tg)n.s' Taking i'nto account the 'anisotro'py OT dielectric and
as calculated from the full Lifshitz theory for uniaxial media optical properties of the media is especially important when

is compared to the forces in the nonretarded limit, eitherIhe anisotropy is significant and if the optical properties of

taking into account or neglecting the anisotropy. AIthough,C("’nSt'.tUtIng mepha are alike. T_he uniaxial van der.Waals n-
strictly speaking, the approximation of no retardation is valigteraction also yields a correction to the structural interaction
only when the interacting bodies are in close proximity to'N heteropha}se nematic an.d. smectlc_systEtﬁSla resgltmg

a correction to the equilibrium thickness of partially or-

each other, one should keep in mind that the retardation dod i ) .
not change the character of the interaction but only decreas&€'ed surface nematic and smectic layers close to ordering
its magnitude when the separation between the bodies is ir?_ubstrates.

creased. If there is another, stronger interaction, which acts

in the system,_ and the van der Waals interactjon contributes ACKNOWLEDGMENTS
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