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Van der Waals interaction mediated by an optically uniaxial layer

A. Šarlah and S. Zˇumer
Department of Physics, University of Ljubljana, Jadranska 19, SI-1000 Ljubljana, Slovenia

~Received 18 May 2001; revised manuscript received 25 July 2001; published 24 October 2001!

We study the van der Waals interaction between macroscopic bodies separated by a thin anisotropic film
with a uniaxial permittivity tensor. We describe the effect of anisotropy of the media on the magnitude and sign
of the interaction. The resulting differences in the van der Waals interaction are especially important for the
stability of strongly confined liquid crystals, and nanostructures characterized by highly uniaxial macroscopic
molecular arrangement, such as in self-assemblies of long organic molecules forming films, membranes,
colloids, etc. We introduce an improved expression for the Hamaker constant which takes into account the
uniaxial symmetry of a medium. In special cases neglecting the optical anisotropy even leads to an incorrect
sign of the interaction.
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I. INTRODUCTION

In the last decades van der Waals interaction was assu
to be a solved problem. However, new technological ap
cations demand smaller and smaller systems whose sta
is strongly influenced even by weak interactions such as
van der Waals interaction which, thus, should be determi
as accurately as possible@1,2#. Especially intriguing are elec
tronic devices incorporating polymers, liquid-crystalline m
terials, and other materials which are characterized by hig
anisotropic macroscopic physical properties@3–6#.

Several approaches have been employed to calculate
van der Waals interaction between macroscopic bodies.
simplest way, known as the Hamaker approach@7#, is to sum
all pairwise interactions between constituent molecules
condensed media these are not independent but rathe
strongly influenced by the surrounding medium; therefo
taking many-body interactions into account becomes es
tial. On a mesoscopic scale a many-body system can be
garded as a continuum, and can be described by macrosc
quantities such as permittivity, which take into account
screening of the surrounding molecules. The continuum
proach is known as the Lifshitz approach@8#. In the nonre-
tarded limit a dependence on the separation between
bodies can be extracted from the material properties, and
van der Waals interaction can be written in a form of
explicit separation dependence and the ‘‘Hamaker’’ const

Although many decades ago Kihara and Honda@9# intro-
duced the van der Waals interaction energy for a three-
system of uniaxial media, generally, the van der Waals fo
for anisotropic media such as liquid crystals is still calcula
by use of isotropic yet average macroscopic physical qu
tities. To our knowledge the anisotropy of interacting me
has been avoided in experimental studies considering an
tropic media; however, there are a few other theoretical s
ies @10,11#. Here the reason for neglecting the anisotropy
the permittivity tensor cannot be the insignificance of t
anisotropy of relevant quantities, but rather the fact that th
are no known simplified expressions to calculate the van
Waals force; however, for isotropic media there are w
known Hamaker constants calculated from the Lifsh
theory ~see, e.g., Ref.@12#!. On the other hand, a gener
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calculation of the van der Waals force, in the case of
anisotropic permittivity tensor, is even more complex than
is in the case of isotropic interacting media.

In this paper, we emphasize the influence of the anis
ropy of the permittivity tensor of a medium on the van d
Waals force through the simplest example of anisotropy
the uniaxial symmetry—and introduce the Hamaker cons
for the same symmetry of the permittivity tensor. There a
two reasons for choosing the uniaxial symmetry. First,
already noted above, there are many important physical
biological systems consisting of layers characterized
highly uniaxial molecular arrangements. In these, the cor
dependence of the van der Waals force on the anisotr
refractive indices and static dielectric constants is needed
adequate explanations of experiments. Second, the unia
symmetry is the highest symmetry yielding an analytical
lution for the surface electromagnetic fluctuation mod
which determine the van der Waals force. An analytical
lution is required for derivation of the analytic Hamaker co
stant.

II. CALCULATION OF THE UNIAXIAL
VAN DER WAALS FORCE

The calculation is performed for a simple planar para
geometry: two macroscopic bodies separated by a layer
uniaxial medium. Here it should be noted that due to
anisotropy of the medium, which changes the boundary c
ditions for the electromagnetic field surface modes, the
sults of the study in the planar parallel system cannot
applied to curved geometries simply by using the stand
Derjaguin procedure@13#. Using the same arguments a
when choosing the uniaxial symmetry of the permittivity te
sor, the optical axis of the interposed uniaxial medium
assumed to be perpendicular to the gap between the ma
scopic bodies. For optical axes laying either in the plane
the gap or even in an arbitrary direction, the Hamaker c
stant can be calculated only numerically. Since the aim
this paper is to introduce simple analytical expressions,
culations for more general cases are omitted here.

In the systems we are referring to, the uniaxial layer
surrounded by isotropic media, either glassy materials,
©2001 The American Physical Society06-1
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uid, or air. Often, especially when talking about liquid cry
tals, the uniaxial order of the layer in question is obtained
inducing the order with some other uniaxially ordered ma
rial. In such a case, the system consists of two or th
uniaxial media with parallel optical axes. In the followin
the calculation will be performed for the general case
three uniaxial media with parallel optical axes. The transf
mation to the case of isotropic macroscopic bodies will
evident.

In a coordinate system with thez axis normal to the gap
between two macroscopic bodies and with axesx andy in the
plane of one of the interfaces, the permittivity tensor of ea
medium readse i

xx(v)5e i
yy(v)5e i'

(v), e i
zz(v)5e i i

(v),

ande i
mnÞm(v)50; herei 51,2, or 3 represent different me

dia. After performing standard calculations as in Ref.@8# or
Refs. @9,14#, i.e., considering Maxwell’s equations for th
electromagnetic field in the dielectric medium and the lin
response of the media, one obtains the expression for
force per unit area between two semi-infinite uniaxial bod
1 and 3 mediated by uniaxial medium 2:

P~d,T!5
kBT

16pd3

e2i
~0!

e2'
~0!

E
0

`

dx x2
D12D23exp~2x!

11D12D23exp~2x!

1
kBT

pd3 (
n51

` SAe2'
d

jn

c D 3

3E
1

`

dp p2S D12
R D23

R exp~22pAe2'
djn /c!

11D12
R D23

R exp~22pAe2'
djn /c!

1
e2i

e2'

D̄12
R D̄23

R exp~22pAe2'
djn /c!

11D̄12
R D̄23

R exp~22pAe2'
djn /c!

D . ~1!

Here the force is a derivative of the change of the free ene
of the zero-point fluctuations of the electromagnetic field d
to the presence of the bodies with respect to the separa
between them. The first term corresponds to the static
sponse of the medium, and the second term to the dyna
response of the medium, whereasjn52pnkBT/\,

D i j 5
ē i~0!2 ē j~0!

ē i~0!1 ē j~0!
, ē i5Ae i i

e i'
,

D i j
R5

si2sj

si1sj
, si5Ap2211e i'

/e2'
, ~2!

D̄ i j
R5

ē i s̄j2 ē j s̄i

ē i s̄j1 ē j s̄i

, s̄i5Ap2211e i i
/e2i

,

ande i5e i( i jn), unless stated otherwise. The influence of
anisotropy of the permittivity tensor on the van der Wa
force enters into the problem through a change of the p
etration depths of the surface fluctuation modes and v
change of the boundary conditions for the electromagn
05160
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field at the interface between two different media. For t
uniaxial permittivity the anisotropy of interacting media
and 3 changes the interaction via the renormalized effec
permittivity e i→Ae i i

e i'
. On the other hand, the anisotrop

of medium 2, which mediates the interaction between
other two media, not only renormalizes the effective perm
tivity but also explicitly affects the magnitude of the intera
tion.

III. UNIAXIAL HAMAKER CONSTANT

In order to evaluate the integral in Eq.~1!, the frequency
dependence of the permittivity has to be known. The perm
tivity varies with the frequency in much the same way
does the atomic polarizability of an atom, and can be usu
represented by a function of a form@14#

e~v!511
e2n2

12 iv/v r
1

n221

12v2/ve
2 , ~3!

wheree andn stand for each of the components of the co
responding tensors,e5e(0) is the static dielectric constan
n is the refractive index of the medium in the visible,v r is
the molecular rotational frequency, andve is the plasma
frequency. Usually,v r,1013 s21!ve;2p3331015 s21.
Sincej152.531014 s21@v r , the dispersion relation is de
termined solely by the electronic absorption, i.e.,e( i jn)'1
1(n221)/(11jn

2/ve
2). Knowing all this the force can be

calculated numerically. However, our aim is to introduce
analytical expression for the van der Waals force, althoug
will be more approximate. In the nonretarded limit, which
valid when the bodies are in close proximity to each oth
the expression in Eq.~1! reduces toP52A/6pd3, whereA
is the Hamaker constant calculated from the Lifshitz theo

A52
3kBT

4 (
n50

`8 S e2i
~ i jn!

e2'
~ i jn!D

3E
0

`

dx x2
D12~ i jn!D23~ i jn!e2x

11D12~ i jn!D23~ i jn!e2x
. ~4!

Here the prime over the sum denotes that the term witn
50 should be multiplied by 1/2. After performing the e
ementary integral in Eq.~4!, neglecting the terms which cor
respond to ‘‘many-body’’ interactions~here, by analogy with
the microscopic description the contributions from differe
orders inD12D23 are termed ‘‘pairwise’’ interaction if only
the first order is taken into account, and ‘‘many-body’’ in
teraction if the complete series of orders is considered!, re-
placing the sum overn by an integral with respect to th
frequency j, and performing a few other simplifications
which allow us to calculate the latter integral analytical
one ends up with the final expression for the Hamaker c
stant for uniaxial dielectric media:
6-2
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A5An501An.05
3

4
kBT

e2i

e2'

ē12 ē2

ē11 ē2

ē32 ē2

ē31 ē2

1
3\ve

8A2
~ n̄1

22n̄2
2!~ n̄3

22n̄2
2!

3F A2~n2i

2 2n2'

2 !

n2'
~2n2'

2 2n̄1
22n̄2

2!~2n2'

2 2n̄3
22n̄2

2!

2

2n2i

2 2n̄1
22n̄2

2

An̄1
21n̄2

2~2n2'

2 2n̄1
22n̄2

2!~ n̄1
22n̄3

2!

1

2n2i

2 2n̄3
22n̄2

2

An̄3
21n̄2

2~2n2'

2 2n̄3
22n̄2

2!~ n̄1
22n̄3

2!
G , ~5!

whereāi5Aai i
ai'

, anda stands for either the static dielec
tric constante or the refractive index in visiblen. If the
interacting macroscopic bodies are isotropic, the effec
parametersē and n̄ are replaced by isotropic parameterse
and n, respectively. If all three media are isotropic, the e
pression reduces to the well known formula~see, e.g., Ref.
@12#!

A5
3

4
kBT

e12e2

e11e2

e32e2

e31e2

1
3\ve

8A2

~n1
22n2

2!~n3
22n2

2!

An1
21n2

2An3
21n2

2~An1
21n2

21An3
21n2

2!
.

~6!

In the following, the Hamaker constant introduced f
uniaxial media will first be compared to the isotropic H
maker constant and, second, its validity with respect to
full Lifshitz theory will be discussed.

A. Uniaxial vs isotropic Hamaker constant

In the derived expressions, the difference between iso
pic and uniaxial media is explicitly manifested: The releva
parameters, which determine the character of the interac
in the case of isotropic interacting media, aree5e iso andn
5niso. In the case of uniaxial media the relevant parame
are not traces of the corresponding tensors,e iso5(e i
12e')/3 and (niso)25(ni

212n'
2 )/3, but rather products of

their eigenvalues:ē5Ae ie' and n̄5Anin'. The sign of the
static part of the Hamaker constant depends on the rela
sequence of the introduced renormalized static dielec
constants: forē2, ē1 ,ē3 or ē2. ē1 ,ē3 the static Hamaker
constant is positive and the static part of the van der Wa
interaction is attractive, whereas forē1, ē2, ē3 or ē1. ē2

. ē3 the static Hamaker constant is negative and the co
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sponding interaction is repulsive. Similar conditions can
determined for the dynamic part of the Hamaker constan
can be shown that the part in the square brackets in Eq.~5! is
positive definite; thus the sign of the dynamic part of t
Hamaker constant depends solely on the sign of the pro

(n̄1
22n̄2

2)(n̄3
22n̄2

2). For n̄2,n̄1 ,n̄3 or n̄2.n̄1 ,n̄3 the dy-
namic Hamaker constant is positive and the dynamic par

the van der Waals interaction is attractive, whereas forn̄1

,n̄2,n̄3 or n̄1.n̄2.n̄3 the dynamic Hamaker constant
negative and the corresponding interaction is repulsive.
sign of the isotropic Hamaker constant has the same
quence dependence as the uniaxial Hamaker constant

with isotropic parameterse iso andniso instead of effectiveē

and n̄, respectively.
As already noted, up to now in experimental studies c

cerning uniaxial layers the van der Waals interaction w
calculated by use of the isotropic Hamaker constant and
tropic parameters. There are two sources of mistakes w
doing this. First, even if the effective parameters are v
close to the isotropic parameters, the magnitude of obtai
Hamaker constant differs from the uniaxial one because
anisotropies e2a

5e2i
2e2'

and Dn25n2i
2n2'

are ne-
glected.~The static part is always smaller, whereas the d
namic part can be either smaller or larger.! In the static part,
the neglected dependence is easily recognized in the
e2i

/e2'
, whereas in the difference of the dynamic parts t

dependence on the anisotropy is not that clear. Second
difference between the isotropic and uniaxial Hamaker c
stants can be even more profound if the sequences of iso
pic and effective parameters are different. In this case,
isotropic expression yields the wrong sign of the interacti
A change of sequences is very easily obtained for static
electric constants, whereas the optical anisotropies are
ally small. Since the static Hamaker constant is about
order of magnitude smaller than its dynamic part, the eff
is not very common in experimental setups. We believe t
one of the reasons why the problem of a possible wrong s
of the Hamaker constant, in systems consisting of unia
media, has not been recognized before is the narrownes
possible combination of materials that satisfy the descri
conditions~see Fig. 1!. However, it can be expected that th
effect has already been observed but not recognized an
understood. The explained change of the attractive or re
sive character of the van der Waals interaction to the rep
sive or attractive character due to the increased optical
isotropy can also be one of the reasons for the change in
stability of thin layers when crossing the~dis!ordering tran-
sition. As an example, we have calculated the Hamaker c
stant for a system which is often a part of the experimen
setup: a thin liquid-crystalline film deposited on a solid su
strate and in contact with air on the other side. For a liq
crystal, e.g., for 5CB (e i518.5, e'57, ni51.702, andn'

51.539) on silica (e514 andn51.5) the van der Waals
interaction is attractive in both uniaxial and isotropic phas
for the same liquid crystal on mica (e511 andn51.6) the
interaction is repulsive in the isotropic and attractive in t
uniaxial phase.
6-3
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B. Hamaker approximation vs Lifshitz theory

After a comparison between the isotropic and uniax
Hamaker constants the validity of the approximations t
lead us from the full Lifshitz theory to the Hamaker consta
should be discussed. By comparing the Hamaker consta
in which we take into account either ‘‘many-body’’ intera
tions @Eq. ~4!# or just ‘‘pairwise’’ interactions@Eq. ~5!#, it
can be seen that in the nonretarded limit neglecting
higher orders does not considerably alter the magnitud
the interaction. Nevertheless, one should bear in mind th
screening of the surrounding molecules decreases the i
action, though, for realistic parameters only by;5% at the
most. As already known, the main defect of the introduc
‘‘Hamaker’’ procedure is not in neglecting ‘‘many-body
interactions but in neglecting the retardation. The latter
comes important when the time it takes for the electrom
netic field of one atom to reach the second one and to re
becomes comparable to the period of the fluctuating dip
Usually, this happens when the interacting atoms are ab
10 nm apart. In Fig. 2 we present the van der Waals force
the two systems considered above. The van der Waals f
as calculated from the full Lifshitz theory for uniaxial med
is compared to the forces in the nonretarded limit, eit
taking into account or neglecting the anisotropy. Althoug
strictly speaking, the approximation of no retardation is va
only when the interacting bodies are in close proximity
each other, one should keep in mind that the retardation d
not change the character of the interaction but only decre
its magnitude when the separation between the bodies i
creased. If there is another, stronger interaction, which
in the system, and the van der Waals interaction contribu
only a correction to the primary interaction or if the van d
Waals interaction is itself the primary interaction, one can
satisfied with an approximate analytical expression which
far easier to calculate and gives better insight into the ef

FIG. 1. Dynamic part of the Hamaker constant as a function
b5n1 /n2'

. The solid line corresponds to the uniaxial Hamak
constant, and the dashed line to the isotropic Hamaker consta
units of A053\ven2'

/8A2. Here n2i
/n2'

51.2 and n3 /n2'

50.67.
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of dielectric and optical properties of constituent media
the van der Waals interaction. Here is the opportunity for
analytical expression we have derived. Especially lately
studies which aim to explain experiments on the spino
dewetting of thin soft organic materials usually characteriz
by uniaxial dielectric permittivity and refractive index, a co
rect determination of at least the character of van der Wa
interaction is very important@15,16#.

IV. CONCLUSION

In conclusion, we have derived an improved analytic
expression for the van der Waals interaction between ma
scopic bodies, characterized by a uniaxial permittivity tens
We have shown that neglecting the anisotropy of static
electric constants and refractive indices can yield the wro
character of the interaction, leading to an incorrect interp
tation or prediction of the stability of thin uniaxial depos
tions. Taking into account the anisotropy of dielectric a
optical properties of the media is especially important wh
the anisotropy is significant and if the optical properties
constituting media are alike. The uniaxial van der Waals
teraction also yields a correction to the structural interact
in heterophase nematic and smectic systems@17,18# resulting
in a correction to the equilibrium thickness of partially o
dered surface nematic and smectic layers close to orde
substrates.
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FIG. 2. Van der Waals force per unit area in the layer of nema
liquid crystal in contact with a solid substrate—~a! silica (e514,
n51.5) and~b! mica (e511, n51.6)—and air. Solid curves cor
respond to full Lifshitz theory for uniaxial media, dashed curves
the van der Waals force per unit area calculated with uniaxial
maker constant, and dotted lines are calculated with the Ham
constant for isotropic media. Inset: logarithmic plot of uniax
pressures.
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